

How Machine Learning Will Change Graduate Admissions

Exploring the opportunities and risks of data-driven enrollment

Location: CGS Annual Meeting, Washington, DC

1-877-589-5668 | team@kiratalent.com | www.kiratalent.com

Panelists

How Machine Learning Will Change Graduate Admissions

JERRY WEINBERG ASSOCIATE PROVOST OF RESEARCH, DEAN OF THE GRADUATE SCHOOL

SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE

LISA ARMISTEAD ASSOCIATE PROVOST, GRADUATE PROGRAMS

MODERATOR EMILIE CUSHMAN FOUNDER AND CEO

GEORGIA STATE UNIVERSITY

KIRA TALENT

Machine Learning

- In Data Mining, KDD, and Predictive Analytics.
- Algorithms that essentially look for useful patterns in extensive amounts of data.
- Discovered patterns can be used to forecast future events, predict unknown or unseen characteristics, indicate a good course of action.

- Supervised learning: Learning from labeled data; building a predictive model from a training dataset.
- Unsupervised learning: Learning from unlabeled data; finding useful patterns in sample dataset that could be used as predictive models.
- Reinforcement learning: Learning from trialand-error; a reward function adjusts a predictive model for good and poor predictions accordingly.

Biases in Machine Learning

- "Amazon Reportedly Killed an Al Recruitment System Because It Couldn't Stop the Tool from Discriminating Against Women" – Fortune Magazine
- "Twitter taught Microsoft's AI chatbot to be a racist jerk in less than a day" – The Verge

Biases can occur in many ways in machine learning; from the data; from the way the digital world represents the real world; from the way the data is presented to the learning algorithm; from the learning algorithm itself.

- Selection bias; sample bias: garbage-in, garbage-out
- Order bias; stability bias
- Inductive bias

"With great power comes great responsibility"

- Leave it to the experts
- Be vigilant of the data
- Continually validate models
- Be on the lookout for concept shift

Georgia State: Two Examples of Machine Learning

The Center for the Advancement of Students & Alumni (CASA)

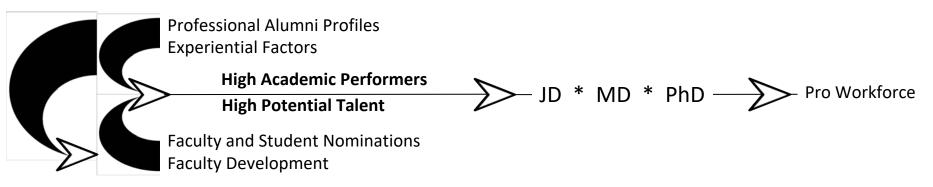
Early Identification System:

Identifying High-Potential Students from Diverse Backgrounds to Support in Pathways toward Humanities PhDs

Overview

Purpose of the Early Identification System

- Comprehensive approach to inviting students into CASA programming, using quantitative and qualitative platforms for identification and tracking.
 - **Step 1:** Descriptive Statistics on Professional Alumni from Georgia State
 - Step 2: Qualitative Description of Success Predictors by Alumni and Faculty
 - **Step 3: Machine Learning to Identify Factors that Predict Progressions**
 - Step 4: Faculty- and Student-Nomination Platforms, with Faculty Development



Quantitative Approach

Marg

Eff

Est

Cooff

Variable

Step 3: Logistic Regression to Identify Factors that Predict Progressions

- Professional Alumni (n=2,606)
- Counterfactual Sample matched on GPA (n=5,300)

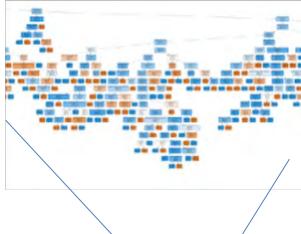
					Coen	EII
Pro Alumni	Matched	Test Statistic	p value	Gender	0.350*	0.07*
13.60*	13.14*	9.03	<0.001	Pell eligible	0.085	0.02
0.18	0.12	7.69	<0.001	DFW_2	3.132*	0.02*
0.20	0.14	7.02	<0.001	Signature Exp	0.183*	0.04*
0.71	0.64	5.86	<0.001	Honors College	0.500*	0.11*
				Work Study	0.332*	0.07*
0.05	0.03	4.21	<0.001	Study Abroad	-0.187	-0.04
0.57	0.53	2.97	0.003	Internship	0.353*	0.07*
0.08	0.07	-0.60	0.540	Average Load	0.115*	0.02*
	13.60* 0.18 0.20 0.71 0.05 0.57	13.60* 13.14* 0.18 0.12 0.20 0.14 0.71 0.64 0.05 0.03 0.57 0.53	13.60* 13.14* 9.03 0.18 0.12 7.69 0.20 0.14 7.02 0.71 0.64 5.86 0.05 0.03 4.21 0.57 0.53 2.97	13.60* 13.14* 9.03 <0.001 0.18 0.12 7.69 <0.001	Pro Addition Matched rest statistic p value rest statistic p value 13.60* 13.14* 9.03 <0.001	Pro AlumniMatchedTest Statisticp valueGender 0.350^* 13.60*13.14*9.03<0.001

Quantitative Approach

Machine Learning Algorithms

Model	Accuracy	Sensitivit Y	Specificit Y	Precision	F1 Score
Decision Trees	0.72	0.52	0.81	0.57	0.54
Bagging Trees	0.78	0.53	0.90	0.73	0.61
Random Forest	0.80	0.55	0.92	0.78	0.64

Important Predictors: First4_GPA; Field_BIOS; Last4_GPA; First4_Load; AVGLOAD; HOPE_NUM; First4_DFW; Math_NUM; Major_DEG1_POL



Data Science Informs Entire Campaign Strategy

Unlock the Power of Your School's Specific Consumer Data

Historical Student Data

- Student and applicant records
- SIS and CRM data sources
- FERPA-compliant storage, use, and data exchange

EAB Data Science

Specialized higher education data scientists formulate an in-depth understanding of your unique consumer base

National Consumer Database

- 200+ million U.S. consumers
- Up to 115 variables per consumer

Develop Affinity Models

Append your historical student data with known consumer variables from our database

Generate Audience List

VS

Identify and locate your highest-affinity prospects for targeted campaign outreach

Construct Student Marketing Personas

233

Isolate the consumer variables that best characterize your highaffinity prospects

Leverage Data Insights

Use affinity-modeling insights to inform your campaign strategies throughout the funnel

Health Science Data Science Robinson **NOTABLE TRENDS NOTABLE TRENDS NOTABLE TRENDS** Fitness Gurus Experience Seekers Experience Seekers "Travel," "Travel Vacation," and "Food" suggest an "Travel," "Travel Vacation," and "Food" suggest an Caring a great deal about a healthy and active audience that is cultured, but also values time to audience that is cultured, but also values time to lifestyle, this audience likely seeks community in explore and disconnect. exercise and sports. They are also likely competitive explore and disconnect. and goal-oriented. Bookworms with a Cause 00 İ Hobbyists Parents "Avid readers," "Contributors," and "Contributes O "Hobbyist," and "Contributors" signal outcomes-Politically" suggest that this audience is interested in "Children Interests" but also "Arts and Crafts" are focused prospects who are passionate about charitable staying informed and contributing their time and often popular with parents. And the age of these causes they are involved in. effort for the things they are passionate about. students indicates a millennial parent population looking for flexibility and work-life-balance H-Fitness Gurus 2 Millennial Parent Oo Hobbyists Caring a great deal about a healthy and active "As part of the young millennial generation, this O "Hobbyist," and "Contributors" signal outcomeslifestyle, this audience likely seeks community in audience values flexibility and balance. "Arts and Crafts" exercise and sports. They are also likely competitive focused prospects who are passionate about charitable and "Children's Interests" are common interests of causes they are involved in. and goal-oriented. parents. ESTJs ISFJs ISFJs ISFJs ISTJs ESFJs 14% 19% 17% 13% 14% 13% OF CURRENT STUDENT BODY The "Defender Personality" are true The "Defender Personality" are true The "Defender Personality" are true The "Executive Personality" loves The "Executive Personality" loves The "Executive Personality" loves altruists, meeting kindness with kindness-in-excess. Prefer to be tradition and order, utilizing their altruists, meeting kindness with kindness-in-excess. Prefer to be tradition and order, utilizing their altruists, meeting kindness with kindness-in-excess. Prefer to be tradition and order, utilizing their understanding of what is right, understanding of what is right, rewarded by seeing first-hand the rewarded by seeing first-hand the rewarded by seeing first-hand the wrong, and socially acceptable to wrong, and socially acceptable to wrong, and socially acceptable to positive impact of their efforts. positive impact of their efforts. positive impact of their efforts. bring people together. Valued for bring people together. Valued for bring people together. Valued for clear advice and guidance. clear advice and guidance. clear advice and guidance.

Commitment to Serving Others Drives Engagement

Health Science

Lowest Performing Ad

Average click rate .46%

Build a better you, Earning a graduate degree in the health sciences from Georgia State University prepares you for a lifetime of self-dulfiliment in a variety of ever-growing industries. We provide an outstanding graduate education and exceptional support for students from all backgrounds. Taking the next step to advance your career can begin today!

Lesson Learned: Audience's desire to help others resonates. Commitment to service messaging outperforms career advancement

copy.

2018 & 19 Affinity Marketing Results

2018 or 19 Entry Year

124	⊵ 49	w 39	Left 29
Applications Submitted Total	Acceptances Total	Deposit Total	* Enrollment Total

Source	Applications	Admits	Deposit	Enrollment
Health Science Display Only	14	5	5	5
Health Science Digital + Email	54	18	15	9
Data Sciences All Channels	21	8	5	3
Business All Channels	35	18	14	12
Total	124	49	39	29

Panelists

How Machine Learning Will Change Graduate Admissions

JERRY WEINBERG ASSOCIATE PROVOST OF RESEARCH, DEAN OF THE GRADUATE SCHOOL

SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE

LISA ARMISTEAD ASSOCIATE PROVOST, GRADUATE PROGRAMS

MODERATOR EMILIE CUSHMAN FOUNDER AND CEO

GEORGIA STATE UNIVERSITY

KIRA TALENT