Toward More Modern STEM Graduate Education Outcomes

The National Academies of SCIENCES • ENGINEERING • MEDICINE

CONSENSUS STUDY REPORT

WLPMIAHKRSFACULTYND GRADUAT TNYMASTEMKUPWIWGK CQFOEDUCATIONRS 5 L G B X P A F O R X T H E WHADS 21 STOCENTURYOR WIR 8 ERN J M ERN 7 O J OZXQ6HRESEARCHM3 O B S U Z X I A M S T U I X F M L A I A S B T O L U O Y M S A O T G A OYMCULTURE 8 CHANGETN.

https://www.nap.edu/catalog/25038/graduate-stem-education-for-the-21st-century

NASEM Study Director: Layne Scherer (Ischerer@nas.edu)

Committee Members

Chair: Alan I. Leshner Chief Executive Officer Emeritus, AAAS

Sherilynn Black

Assistant Professor of the Practice, Medical Education; Associate Vice Provost for Faculty Advancement; and Co-Principal Investigator, Duke University BioCoRE Program Duke University

Mary Sue Coleman

President
Association of American Universities (AAU)

Jaime Curtis-Fisk

Scientist and STEM Education Advocate
Dow Chemical Company

Kenneth Gibbs, Jr.

Program Director
National Institute of General Medical Sciences

Maureen Grasso

Professor of Textile Sciences and Former Graduate School Dean North Carolina State University

Sally Mason

President Emerita
University of Iowa

Mary Maxon

Associate Laboratory Director for Biosciences Lawrence Berkeley National Laboratory

Suzanne Ortega

President
Council of Graduate Schools

Christine Ortiz

Morris Cohen Professor of Materials Science and Engineering, Massachusetts Institute of Technology Founder, Station1

Melanie Roberts

Director of State and Regional Affairs Pacific Northwest National Laboratory

Henry Sauermann

Associate Professor of Strategy and Peter Pühringer Chair in Entrepreneurship, European School of Management and Technology, Berlin Research Associate, National Bureau of Economic Research

Barbara Anna Schaal

Dean of Arts and Sciences and Professor Washington University in St. Louis

Subhash Singhal

Battelle Fellow and Fuel Cells Director Pacific Northwest National Laboratory

Kate Stoll

Senior Policy Advisor MIT Washington Office

James M. Tien

Distinguished Professor and Dean Emeritus University of Miami College of Engineering

Keith Yamamoto

Vice Chancellor for Science Policy & Strategy
Director of Precision Medicine
Professor of Cellular & Molecular Pharmacology
University of California, San Francisco

The Issue

 Graduate STEM education is lagging behind the evolution of science and engineering, the nature of the workforce, and the career goals and paths of its students

The world of science has changed substantially over the last 50-100 years

- The science and engineering workforce is growing
 - Becoming much more diverse
- Over 60% of new Ph.D.'s do NOT go into academic research
- The nature of science itself has changed
 But we train them the same way we always have

We need to modernize graduate STEM education

- Need to redefine the outcomes
 - To better reflect today's realities and students' needs and interests

NASEM Committee began by articulating "core competencies"

Skills every student must acquire

Core Competencies for the STEM Master's Degree

- 1. Disciplinary and interdisciplinary knowledge
- 2. Professional competencies
- 3. Foundational and transferrable skills
- 4. Research

Based on CGS recommendations

Core Competencies for the STEM Ph.D. Degree

- 1. Develop Scientific and Technological Literacy and How to Conduct Original Research
- a. Deep specialized expertise
- b. Acquire sufficient transdisciplinary knowledge
- c. Identify problems and articulate research questions
- d. Design a research strategy
- e. Evaluate outcomes and iterate as necessary
- f. Adopt rigorous standards of investigation and acquire mastery of skills needed in the field of study
- g. Learn and apply <u>professional norms and practices</u> of the scientific or engineering enterprise

Core Competencies for the STEM Ph.D. Degree

Develop Leadership, Communication, and Professional Competencies

- a. Develop ability to work in <u>collaborative and team settings</u>, including with individuals from diverse cultural and disciplinary backgrounds
- b. Develop <u>professional competencies</u> needed to plan and implement research project
- c. Acquire the capacity to <u>communicate</u> in many modes and to both STEM professionals and other audiences

Core competencies are the central but not only outcome goal of a modern graduate education

- Also want student exposure to range of other career options
 - Not just academic research

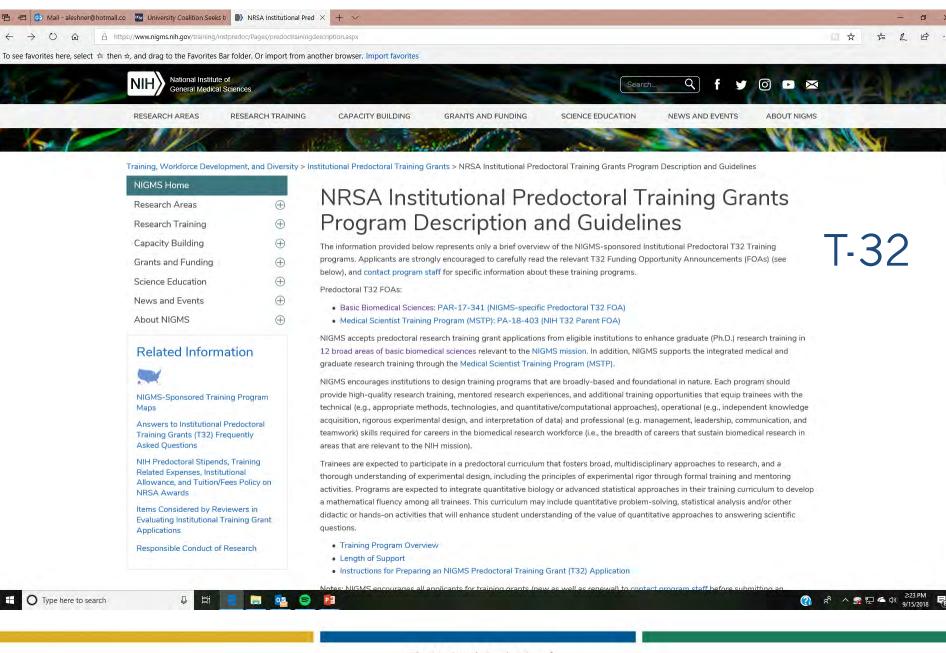
How to get there from here?

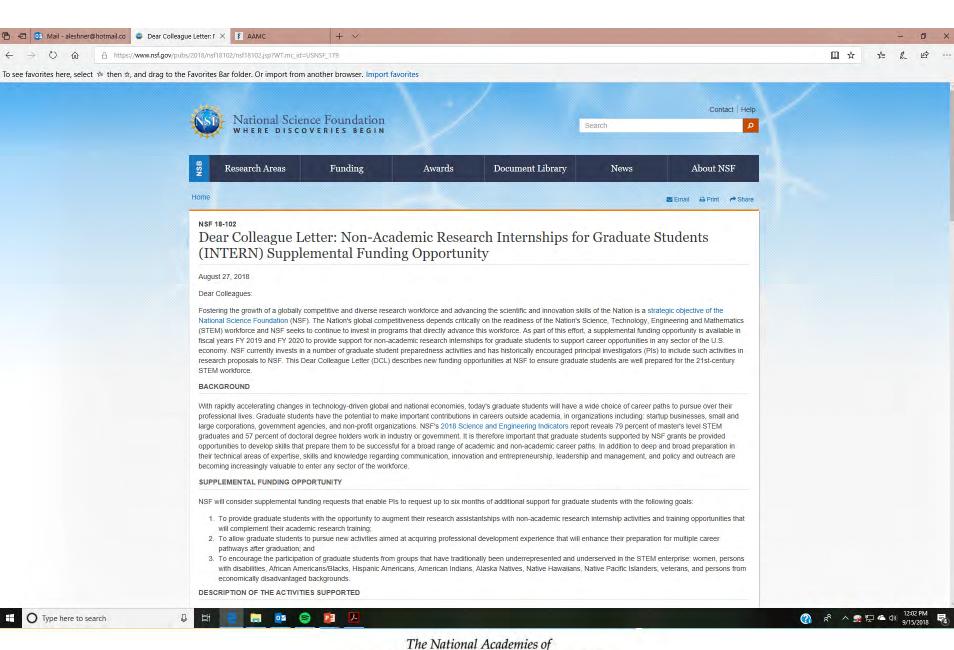
Action steps for all stakeholders

Key Recommendations Relate to:

- Collecting and sharing national and institutional <u>data</u> on student and alumni performance and career outcomes
- Providing for <u>career exploration</u> and preparation
- Evolving the <u>structure</u> of doctoral research activities
 - And <u>capstone projects/dissertations</u>
- Promoting <u>effective teaching and mentoring</u>
- Ensuring <u>diverse</u>, <u>equitable</u>, <u>and inclusive environments</u>
- Improving the quality of the graduate student experience

Making Change


- Cultural and behavioral changes throughout the system
 - Reduce stigma of non-academic careers
 - Make the system more student-centric
 - Re-balance the incentive system
 - Currently overweighted toward research productivity


Key Recommendations for Institutions and Graduate Programs and Their Faculties

- Make data available on graduate program outcomes
- Provide training in and reward effective teaching and mentoring
 - Adjust promotion and tenure criteria
- Provide ways to explore a variety of careers
- Re-design capstone projects and dissertations to reflect the state of the art in STEM
- Create equitable and inclusive environments
- Provide resources to help students manage stresses and pressures of graduate education

Some things have been happening

- Both before and after the NAS study
 - Individual institutions
 - E.g., building in career exploration opportunities
 - Council of Graduate Schools (CGS)
 - Association of American Universities (AAU)
 - Pushing data career outcome transparency hard
 - National Institutes of Health (NIH)
 - Mostly NIGMS
 - National Science Foundation (NSF)
 - Most directorates

Real, lasting changes will depend on:

- Making graduate education student-centric
- Adjusting outcome goals and curricula to realworld career goals
 - While ensuring core competencies
- Reducing stigma of non-academic careers
- Rewarding high quality teaching, advising and mentoring
- Real commitment to providing a diverse, equitable and inclusive environment