Building Competency Based Master's Programs

An Example of a CBE Program from Valdosta State University

VALDOSTA

Anthony Scheffler
Interim Associate Vice President of Academic Affairs
Valdosta State University
Lead Investigator for Competency Based Education Initiatives University System of Georgia

VSU, In partnership

 with community. . .- Solicited by two local school districts
- An expressed need for STEM educators
- Focus on working (masters level) classroom educators
- Support from:

GaPSC: advanced approval GaDOE: startup grant CAEL: JumpStart USG: LMS support

CBE is an opportunity not simply a repackaging of the status quo.

VSU's CBE Program Overview

- Online K-5 graduate level educator endorsements in Science and Math
- Authentic, project-based, rubric scored, mastery assessments
- May be cross-walked to courses
- Distributed faculty role (content experts, faculty facilitators \& success coaches)
- Exclusive use of OERs

Program Tenets and Brand

YOUSucceed
VSU's Personalized Learning Option

Conceptual \& Operational Program Tenets

Curricular Model

A clearly defined curricular model ensures the:

- Organizational and Operational Architecture for program domains, competencies, assessments, and learning experiences

VSU's CBE Curricular Model

(Science Endorsement)

VSU's CBE Curricular Model

(Science Endorsement)

	Identify Program Competency Domains	Create Domain Competencies	Grot by	g Compe oups (co	cies
		$\mathrm{CsC}_{1}, \mathrm{CsC}_{2}, \mathrm{CsC}_{3} \ldots \mathrm{CsC}_{22}$	CG ${ }_{1}$	CG ${ }_{2}$	CG ${ }_{3}$
	CDsc ${ }_{1}$ (Science Content)		CsC_{1-4}	CsC_{5-11}	
	CDUC_{2} (Unifying Concepts)	$\mathrm{Cuc}_{1}, \mathrm{Cuc}_{2}, \mathrm{Cuc}_{3} \ldots \mathrm{CsC}_{6}$	Cuc_{1-2}	CuC_{3-4}	Csc
	CDA_{3} (Assessment)	$\mathrm{CA}_{1}, \mathrm{CA}_{2}, \mathrm{CA}_{3}$	CA_{1}	CA_{2}	CA_{3}
	CDTU_{4} (Technology Utilization)	$\mathrm{CTU}_{1}, \mathrm{CTU}_{2}, \mathrm{CTU}_{3}, \mathrm{CTU}_{4}$	This arrangement is reflective of a nonterm-based, (perhaps course cross-		
	CDSR_{5} (Social Relevance)	$\mathrm{CSR}_{1}, \mathrm{CSR}_{2}, \mathrm{CsR}_{3} \ldots \mathrm{CSR}_{5}$	gram move	in subscri ugh the	on pe
	$\mathrm{CDSP}_{6 \text { (Science Pedagogy) }}$	$\mathrm{CsP}_{1}, \mathrm{CsP}_{2}, \mathrm{CsP}_{3} \ldots \mathrm{CSP}_{12}$	$\begin{aligned} & \text { ta pace } \\ & \text { cor } \end{aligned}$	regulat etion tim	
	CDPD_{7} (Professional Development)	$\mathrm{CPD}_{1}, \mathrm{CPD}_{2}, \mathrm{CPD}_{3}$	CPD_{1}	CPD_{2}	CPD_{3}

VSU's CBE Curricular Model

K-5 Teacher Certification Science Endorsement (51 competencies; Three graduate courses, 3 credit hour equivalency per course)

Curricular Content Development is a Collaborative, Coordinated Process

Use of Backward Design Development Process

Desired Result-
 Evidence of Result
 Learning Experience

CBE Learning Module EScTU 4 : K-5 Science Teaching Endorsement

Competency(ies)	Mastery Assessment(s)	Learning Activity(ies)
EScTU_{4} : Plan an activity to demonstrate connections between physical science and mathematics using technology.	Describe in detail an activity that you can incorporate into a lesson that connects mathematics and physical science, using technology. Include the appropriate mathematical standard and science content and characteristics of science standards. Describe how technology can be used to demonstrate the connection between physical science and mathematics. The assessment will be evaluated using the Physical Science Competency TU4 - Assessment Rubric. You can use this rubric as a reference as you complete this assignment. Submit to the - Physical Science Competency TU4 - Dropbox.	In this module you will plan an activity to demonstrate the connections between science and mathematics using technology. STEM lessons always combine content areas together in one lesson just as scientists use mathematics and technology in realworld investigations. You will find the links below helpful in planning your activity. Required Activities Title: Physical science and Math Activity using technology (estimated on task time: 1 hour) 1. Access the Georgia Performance Standards for K-5 (Read the standards and become familiar with what students should know and be able to do in each grade level for both math and physical science). In the "Characteristics of Science" section for each grade level in the science standards, you will find grade level specifics for mathematical skills and tools, and technology specific to that grade. Science: https://www.georgiastandards.org/Standards/Pages/BrowseStandards/ScienceStandardsK-5.aspx Math: https://www.georgiastandards.org/Georgia-Standards/Pages/Math-K-5.aspx 2. Read Nancy Blair's article, "Technology Integration for the New $21^{\text {st }}$ Century Learner" in the January/February 2012 issue of the National Association of Elementary School Principals Journal. http://www.naesp.org/principal-januaryfebruary-2012-technology/technology-integration-new-21st-century-learner 3. Read Edutopia article: "How to Creatively Integrate Science and Math" http://www.edutopia.org/blog/integrating-math-science-creatively-ben-johnson 4. Read Education World article: Buckshaw, L. , A. \& Lyon (2015), Integrating Technology and Science. Retrieved from http://www.educationworld.com/a_tech/tech/tech233.shtml on December 3, 2015.

CBE Learning Module EScTU_{4} : K-5 Science Teaching Endorsement

Competency(ies)	Mastery Assessment(s) (Desired Result)	Learning Activity(ies) (Evidence of Result)	$\xrightarrow{\text { (Learning Experience) }}$

Describe in detail an activity that you can incorporate into a lesson that connects mathematics and physical science, using technology. Include the appropriate mathematical standard and science content and characteristics of science standards. Describe how technology can be used to demonstrate the connection between physical science and mathematics.
The assessment will be evaluated using the Physical Science -
Competency TU4 - Assessment Rubric. You can use this rubric as a reference as you complete this assignment.
Submit to the - Physical Science - Competency TU4 - Dropbox.

In this module you will plan an activity to demonstrate the connections between science and mathematics using technology. STEM lessons always combine content areas together in one lesson just as scientists use mathematics and technology in real-world investigations. You will find the links below helpful in planning your activity.

Required Activities

Title: Physical science and Math Activity using technology (estimated on task time: 1 hour)

1. Access the Georgia Performance Standards for K-5 (Read the standards and become familiar with what students should know and be able to do in each grade level for both math and physical science). In the "Characteristics of Science" section for each grade level in the science standards, you will find grade level specifics for mathematical skills and tools, and technology specific to that grade.
Science: https://www.georgiastandards.org/Standards/Pages/BrowseStandards/ScienceStandardsK-5.aspx
Math: https://www.georgiastandards.org/Georgia-Standards/Pages/Math-K-5.aspx
2. Read Nancy Blair's article, "Technology Integration for the New $21^{\text {st }}$ Century Learner" in the January/February 2012 issue of the National Association of Elementary School Principals Journal. http://www.naesp.org/principal-januaryfebruary-2012-technology/technology-integration-new-21st-century-learner
3. Read Edutopia article: "How to Creatively Integrate Science and Math" http://www.edutopia.org/blog/integrating-math-science-creatively-ben-johnson
4. Read Education World article:

Buckshaw, L. , A. \& Lyon (2015), Integrating Technology and Science.
Retrieved from http://www.educationworld.com/a_tech/tech/tech233.shtml on December 3, 2015.

Overview Life Science Content (LSC)

Competency LSc4: Explain how adaptations, behaviors, and external features affect the survival or extinction of organisms.

In this module you will...

Research plant and animal adaptations for survival and how the biome influences these adaptations.
State examples of organisms that use mimicry, camouflage, and chemical substances for survival. Explain how each of these adaptions aid in survival.

Choose a plant from each of the 7 biomes, identify the biome, illustrate the plant and describe the features it uses for survival in its habitat.

Learning Assessments

Formative Assessments

- Strategically embedded in the learning activities
- Evaluated by self-assessment, peers, Support Coach, or intelligent agent
- May be used as gateways to forward progression within a competency
- Variety of objective and subjective formats

Competency Mastery Assessment

- Project-based
- Must be implemented in an authentic setting
- Scored based on outcomes rubric
- Possible outcomes: 4=High Mastery; 3=Mastery; 2=Not yet mastered; 1=Not yet mastered

VSU's CBE Operational Model

Program Implementation Team/Faculty

Mapping a Preboarding/Onboarding Process

Establish Fit
Align Tenets
Support Base
Modeling
Development
Onboarding
Activation
Next Steps

Preboardjng (screening) Process

Establish Fit

Align Tenets

Support Base

Modeling

Development

Onboarding

Activation

Self-Screening Criteria and Assessment-based Screening

- Do you have adequate time to allocate to your educational goals?
- Gan you devote time for uninterrupted study?
- Do you work well independently and are you self: motivated?
- Do you enjoy reading?
- Do you want a flexible schedule?
- Do you enjoy working on a computer?
- Are you organized?
- Do you communicate well through writing?
- Do you have a reliable computer and internet service?

Use of Behavioral Motivators

Establish Fit
Align Tenets
Support Base
Modeling
Development
Onboarding
Activation
Next Steps

Use of Behavioral Motivators

Timing	Trigger	Occurrence
First Competency completed.	Student receives a "High Mastery" or "Mastery" on a competency for the 1st time during enrollment.	Once per course.

First competency mastered at the highest level.

All competencies in a set completed.

All competencies in a Cgroup (course) completed.

Student receives "High Mastery" for the 1st time on a competency in a course.

Student receives a "Mastery" or "High Mastery" on all competencies in a competency set.

Student receives "Mastery" or "High Mastery" on all competencies in C-group (course).

Once per course.

Once per C-set. Multiple times per C-group (course).

Once per C-group (course).

Progression Metrics Dashboards

Establish Fit
Align Tenets
Support Base
Modeling
Development
Onboarding
Activation
Next Steps

Lessons Learned

- Non-term Billing can be a challenge
- Financial Aid challenges (Regular and Substantive Interaction, SAP)
- The importance of student preboarding /onboarding
- Administrative understanding \& support is critical

Where to from here?

- Payment by student or B2B format?
- Go it alone or integrate within a system-level initiative?
- Integrate within the university or create satellite structure?
- Integration of badges/micro-credentials?

Getting started. . .

- Identify willing Sherpas
- Discover \& nurture local champions
- Collaborate with other CBE programs (VSU ex.: UW, NAU, WGU)
- Connect with centers of expertise (VSU ex.: C-BEN, CAEL, Eduventures, D2L, UPCEA, ALG)
- Define a cost/return plan (see NCHEMS model)
- Embrace the chaos monkey

Thank You
 Questions / Comments?

Anthony Scheffler
Interim Associate Vice President of Academic Affairs Valdosta State University
ajscheffler@Valdosta.edu
229.333.5950

Valdosta, GA 31698

