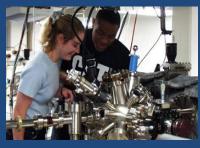


Graduate Research Fellowship Program

Fields of Study


Gisele Muller-Parker & Richard Hill gtmuller@nsf.gov

GRFP Overview

- Initiated 1952
- Identifies Nation's future STEM leaders
- Focuses on the individual
- Promotes diversity in the STEM workforce
- Adheres to the NSF Merit Review Criteria

GRFP Key Elements

Applicants – undergraduates, beg. graduate students

Five Year Award – \$121,500

Three years of support

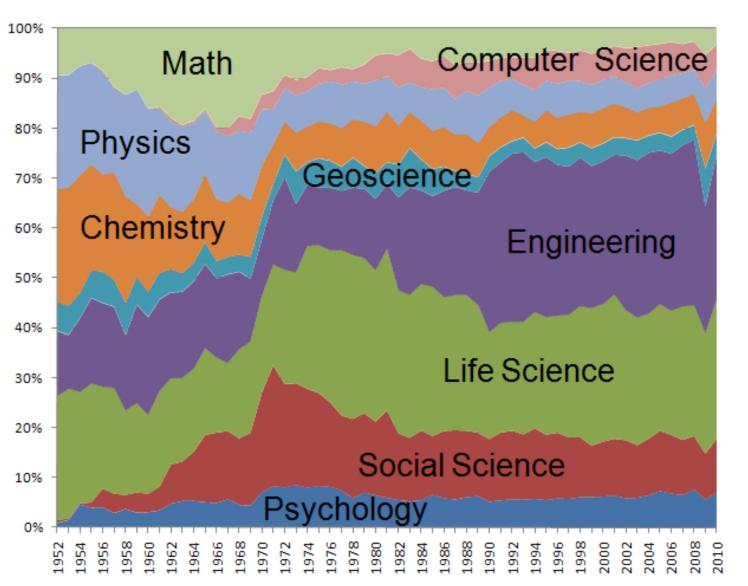
- \$30,000 Stipend per year
- \$10,500 Educational allowance to institution
- International research opportunities; supercomputer access

GRFP Unique Features

- Choice of project, research advisor & program
- No service requirement
- Portability
 - Any accredited institution
 - MS PhD
- Flexibility
 - "On Reserve"
 - "On Tenure"

GRFP Success Rate

2008


- 1,000 Awards
- 10,000 Applications
- ~ 10% Success

2010

- 2,000 Awards
- 12,000 Applications
- ~ 17% Success

GRFP Funding History

~20%
Physical
sciences &
mathematics

~30% Engineering

~30% Life sciences

~20% Social sciences

1952: Announcement of Fellowships

FELLOWSHIPS

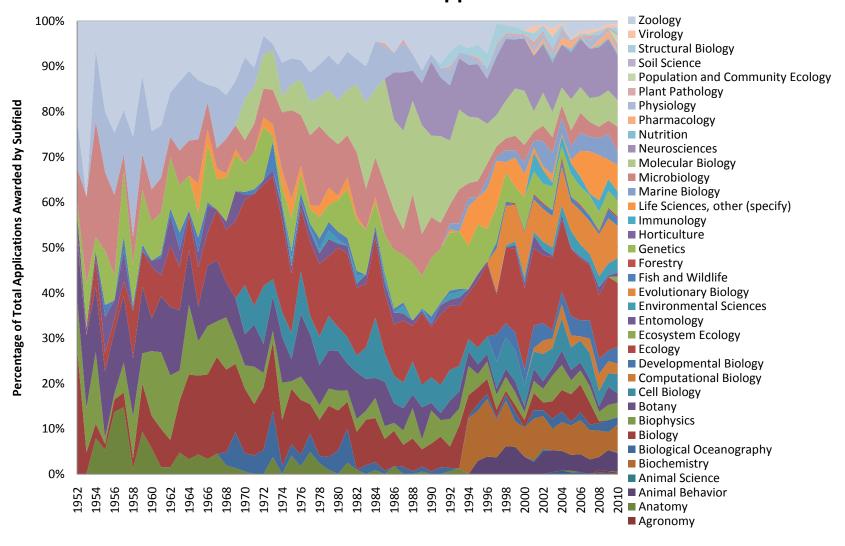
in the

BIOLOGICAL, ENGINEERING, MATHEMATICAL, MEDICAL AND PHYSICAL SCIENCES

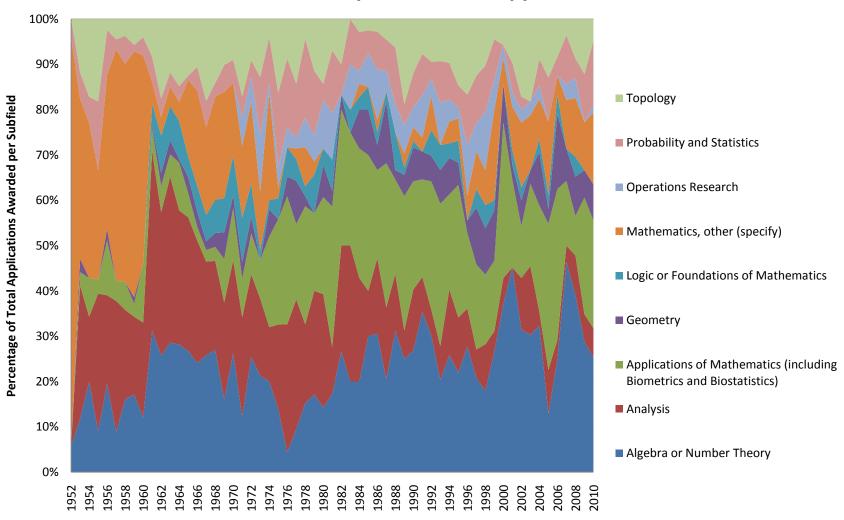
The National Science Foundation is authorized by the National Science Foundation Act of 1950 to award Fellowships to promote the progress of science by increasing the nation's supply of trained scientists. Selection of persons for fellowships will be made from among citizens of the United States solely on the basis of ability.

Basic stipends range from \$1400 to \$3400 per year. The fellowships will also provide payment of tuition and fees, dependency allowances for married Fellows and limited travel allowances.

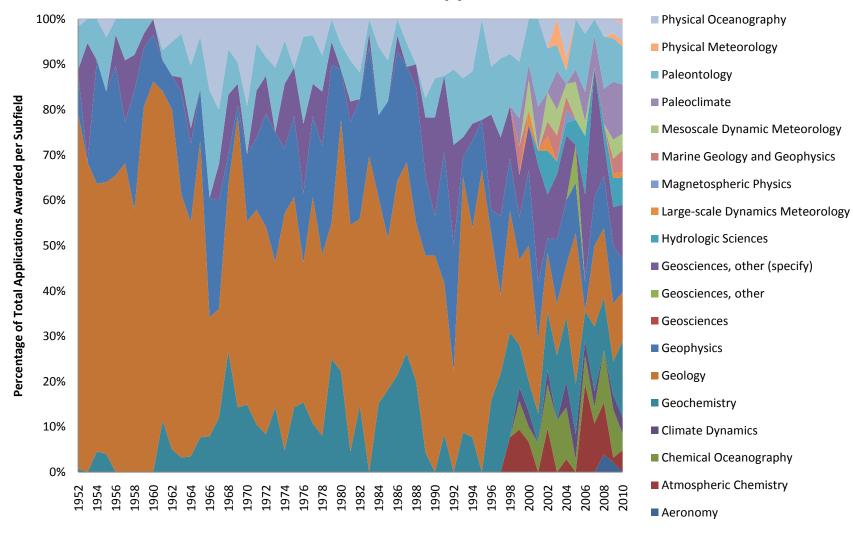
Appointments are for one year. The closing date for receipt of applications for 1953-54 will be January 5, 1953. Awards will be made on April 1, 1953.

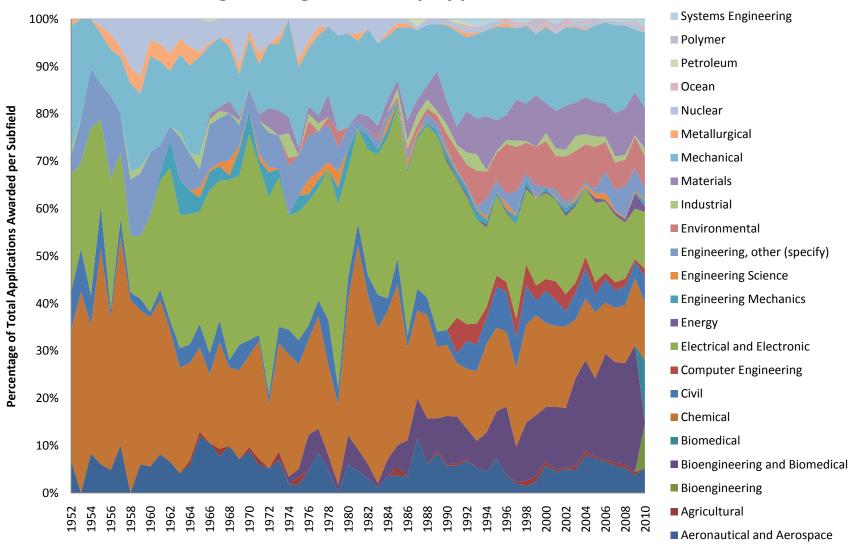

Applicants for predoctoral fellowships will be required to take an examination designed to test scientific aptitude and achievement.

Applications will be evaluated by committees of scientists appointed by the National Research Council; final selection of Fellows will be made by the National Science Foundation.


PRIMARY FIELD OF STUDY

Original Fields		1984 -			1998 -	
1952	1965 - 1973	1989	1990 - 1993	1994 - 1997	2009	2010
Engineering	Engineering					
Biological	Life and Medical	Life				
Sciences	Sciences	Sciences				
Medical						
	Psychology					
	Social Sciences					
Mathematical	Mathematical					
Sciences	Sciences					
			Computer	Computer & Info	rmation Sci	ence and
			Science	Engineering		
Physical Science	es Physical Sciences					
		Chemistry				
		Earth				
		Sciences			Geoscience	S
			Physics &			
		Physics	Astronomy			
						STEM
						Educ &
						Learning
						Res


Life Sciences Subfield - Applications Awarded


Mathematical Sciences per Subfield - Applications Awarded

Geosciences Subfield - Applications Awarded Solar-Terrestrial

Engineering Subfield by Applications Awarded

MATHEMATICAL SCIENCES SUBFIELD	START YEAR	END YEAR
Algebra or Number Theory	196	5
Analysis	196	5
Applications of Mathematics	196	5
Computer Science	196	5 1989
Geometry	196	5
Logic or Foundation of Mathematics	196	5
Probability and Statistics	196	5
Topology	196	5
Operations Research	1977	2

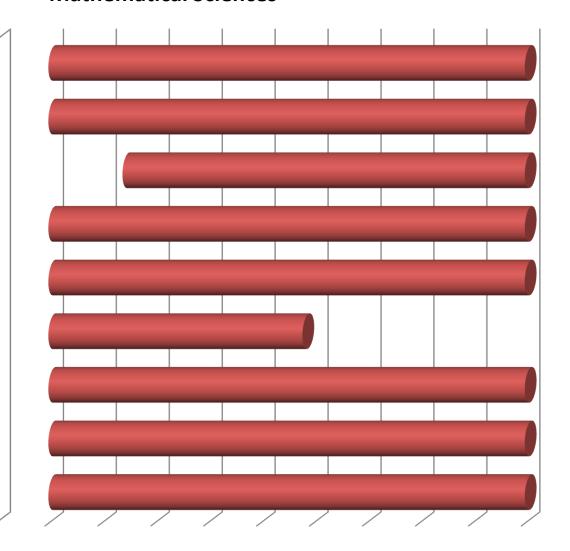
Mathematical Sciences

Topology

Probability and Statistics

Operations Research

Logic or Foundation of Mathematics

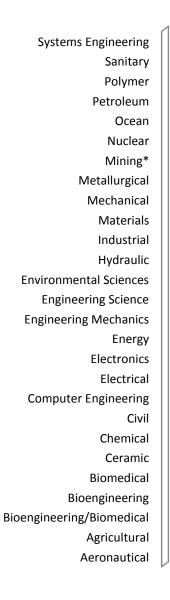

Geometry

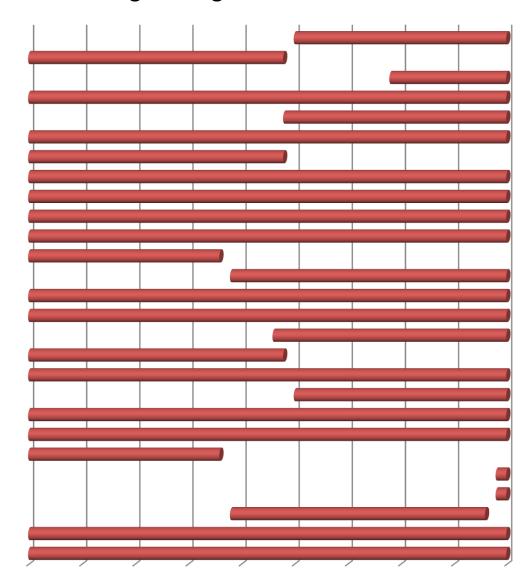
Computer Science

Applications of Mathematics

Analysis

Algebra or Number Theory

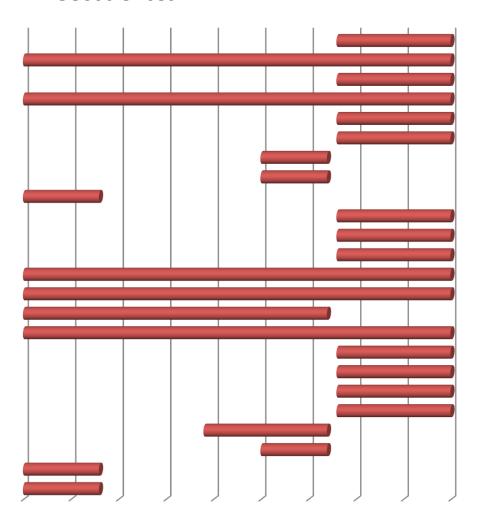

COMPUTER SCIENCE SUBFIELD	START YEAR	END YEAR
Computer Science	1990	1993
Information Sciences	1990	1993
A.I. (Robotics and Expert Systems)	1994	2006
Computer Science - Languages and Systems	1994	
Computer Science - Theory	1994	2006
Computer Systems Design ()	1994	
Database Systems	1994	2006
Human Computer Interaction	1994	
Information Technology and Organizations	1994	
Networks and Communications	1994	
Scientific Computing	1994	2004
Software Engineering	1994	
Graphics	1999	2006
Scientific Computing and Informatics	2005	
Software Engineering - Computer Architecture and Grids	2005	2006
Information Security and Assurance	2005	
A.I. (Robotics, Computer Vision, and Human Language Processing)	2007	
Computer Science - Theoretical Foundations	2007	
Databases, Information Retrieval, and Web Search	2007	
Graphics and Visualization	2007	
Computer Architecture and Grids	2007	
Operating Systems and Middleware	2007	

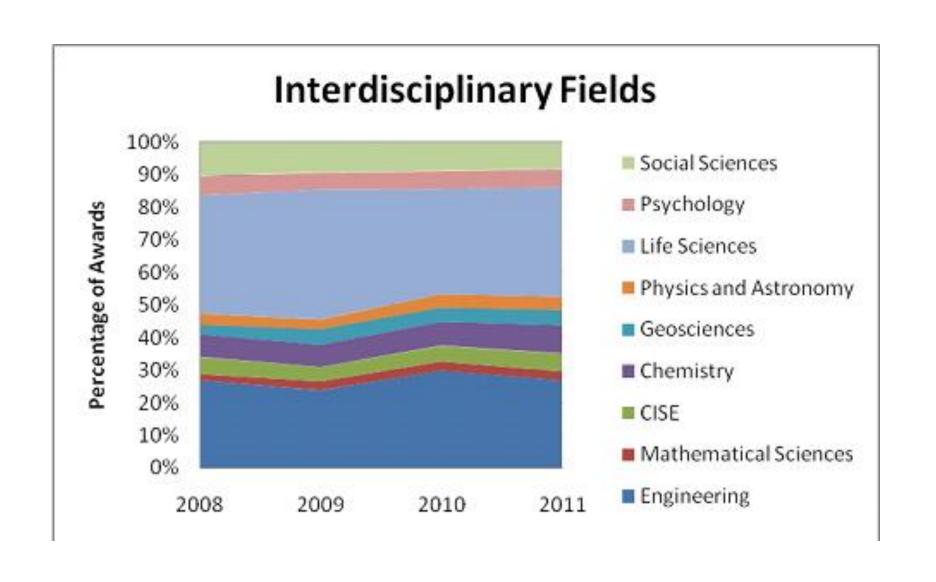

CISE

Information Sciences **Computer Science** Operating Systems and Middleware Software Engineering Information Security and Assurance **Computer Architecture and Grids** Software Engineering - Computer Architecture and Grids Scientific Computing and Informatics Scientific Computing **Networks and Communications** Information Technology and Organizations **Human Computer Interaction Graphics and Visualization** Graphics Databases, Information Retrieval, and Web Search **Database Systems** Computer Systems Design () **Computer Science - Theoretical Foundations Computer Science - Theory** Computer Science - Languages and Systems A.I. (Robotics, Computer Vision, and Human Language Processing) A.I. (Robotics and Expert Systems)

ENGINEERING SUBFIELD	START YEAR	END YEAR
Aeronautical	1965	
Agricultural	1965	
Ceramic	1965	1983
Chemical	1965	
Civil	1965	
Electrical	1965	
Electronics	1965	1989
Engineering Mechanics	1965	
Engineering Science	1965	
Hydraulic	1965	1983
Industrial	1965	
Materials	1965	
Mechanical	1965	
Metallurgical	1965	
Mining	1965	1989
Nuclear	1965	
Petroleum	1965	
Sanitary	1965	1989
Bioengineering/Biomedical	1984	
Environmental Sciences	1984	
Energy	1988	
Ocean	1989	
Computer Engineering	1990	
Systems Engineering	1990	
Polymer	1999	

Engineering




	START	
GEOSCIENCES SUBFIELD	YEAR	END YEAR
Earth Sciences	1965	1973
Engineering Geology	1965	1973
Geochemistry	1965	
Geography (physical)	1965	1997
Geology	1965	
Geophysics	1965	
Marine Geology and Geophysics	1965	1973
Paleontology	1965	
Physical Oceanography	1965	
Environmental Sciences	1984	1997
Atmospheric Sciences	1990	1997
Marine Sciences	1990	1997
Meteorology	1990	1997
Aeronomy	1998	
Atmospheric Chemistry	1998	
Chemical Oceanography	1998	
Climate Dynamics	1998	
Hydrologic Sciences	1998	
Large-Scale Dynamics Meteorology	1998	
Magnetospheric Physics	1998	
Mesoscale Dynamic Meteorology	1998	
Paleoclimate	1998	
Physical Meteorology	1998	
Solar-Terrestrial	1998	

Geosciences

Solar-Terrestrial Physical Oceanography Physical Meteorology Paleontology Paleoclimate Mesoscale Dynamic Meteorology Meteorology Marine Sciences Marine Geology and Geophysics Magnetospheric Physics Large-Scale Dynamics Meteorology **Hydrologic Sciences** Geophysics Geology Geography (physical) Geochemistry **Climate Dynamics** Chemical Oceanography Atmospheric Chemistry Aeronomy **Environmental Sciences Atmospheric Sciences Engineering Geology Earth Sciences**

Integrative Graduate Education and Research Traineeship (IGERT)

Ram M. K. Ramasubramanian, PhD
Program Director-IGERT
National Science Foundation
mramasub@nsf.gov

Grand Challenges-NAE Report

Engineering's Grand Challenges

Voting Results:

Make solar energy economical

Votes: 12779

Provide energy from fusion

Votes: 7512

Provide access to clean water

Votes: 7213

Reverse-engineer the brain

Votes: 4640

Advance personalized learning

Votes: 3670

Restore and improve urban infrastructure

Votes: 3483

Engineer the tools of scientific discovery

Votes: 3396

Develop carbon sequestration methods

Votes: 2743

Engineer better medicines

Votes: 2563

Prevent nuclear terror

Votes: 2309

Advance health informatics

Votes: 2283

Secure cyberspace

Votes: 2240

Enhance virtual reality

Votes: 2106

Manage the nitrogen cycle

Votes: 1864

Addressing Grand Challenges

- Grand Challenges are inherently
 - Interdisciplinary, complex
 - Involves not just science and engineering, but also policy, government, and geopolitics
- Plans to tackle grand challenges should include:
 - Systematic <u>training for future scientists</u> and engineers to take on these challenges
 - Strategic support for research
 - Building an innovation ecosystem

Disciplinary Thinking and Grand Challenges

- Energy
- Climate change
- Water
- Food
- Health care
- Infrastructure
- Safety
- •

"I'm on the verge of a major breakthrough, but I'm also at that point where chemistry leaves off and physics begins, so I'll have to drop the whole thing."

NSF and Interdisciplinary Research

- NSF has a long history of encouraging interdisciplinary research at all levels of the organization.
- This includes support for proposals that are submitted in response to targeted IDR solicitations and for unsolicited proposals

NSF interdisciplinary support

–Single vs. multiple investigator awards:

• 1987: 18%

• 2007: 46%

- Co-funding in 2008 at 8%
- –Use of the term "interdisciplinary":
 - 118 of 342 (35%) active solicitations in 2008

IGERT Vision

 IGERT envisions that the next generation of U.S. PhDs is diverse, globally competitive with the training and skills necessary to work in an interdisciplinary collaborative research environment in emerging and critical areas of science and engineering, and contribute to innovative solutions that address societal needs and grand challenges for the 21st Century.

IGERT Goals

- Support interdisciplinary STEM research themes
- Support novel research-based graduate education and training mechanisms to help students transcend disciplinary boundaries and work in a collaborative and innovative environment
- Support novel strategies and plans for recruitment, mentoring, retention, and graduation of U.S. Ph.D. students in NSF-supported STEM fields, including efforts aimed at members of groups underrepresented in science and engineering

IGERT Goals

- Support institutional plans to establish a supportive environment for innovation and for learning.
- Support activities that foster the development of professional and personal skills, skills for communicating at all levels, development of an international perspective, develop an awareness of ethics and responsible conduct of research
- Support institutionalizing best practices in education and training of PhD students.

Integrative Graduate Education and Research Traineeship (IGERT)

- Awards to institutions (\$3-3.2M/5 years); senior
- Recent competitions have > 400 pre-proposals,
 ~20 awards (5%)
- Since 1997:
 - 240 awards
 - 110 different lead institutions
 - 43 states, DC, and Puerto Rico
 - ~25 trainees/award, typically supported 2 years/each
 - ~5,200 PhD students have been supported

Support Level-Details

- 5-year awards
- Up to \$600K per year
- Up to \$200K additional in the first year for equipment, special materials, or methodologies, part of the total \$600K
- Additional International Training Component \$50K per year for years 2-5
- Indirect limitation: 8% of total direct costs excluding equipment and COE
- Graduate student stipend \$30,000, Cost of education expenses \$10,500
- 20 new awarded for the 2010 competition.

Some IGERT Interdisciplinary Themes

- Smart sensors and integrated devices
- Biosphere-atmosphere research
- Molecularly designed materials
- Assistive technology
- Sequential decision-making
- Urban ecology
- Astrobiology
- Alternate Energy
- Nanotechnology

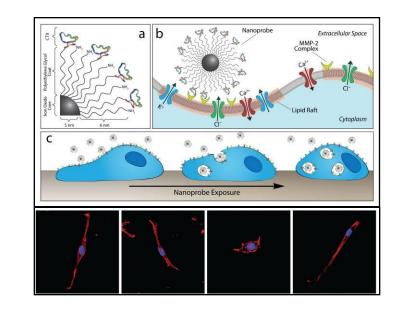
IGERT Examples

IGERT: Marine Sustainability

University of Alaska

PI: Ginny Eckert

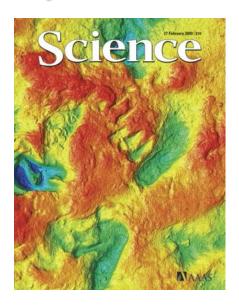
Goal: Double the # of Alaskan


Native PhD Graduates

from UAF

IGERT: Nanotechnology University of Washington PI: Marjorie Olmstead

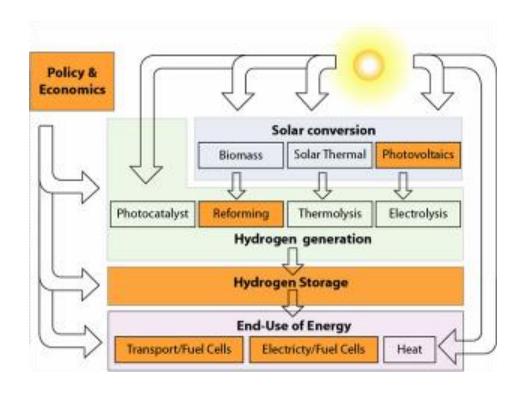
Education achievement: America's first PhD program in Nanotechnology



Theme: Environmental Change and Implications for Humanity

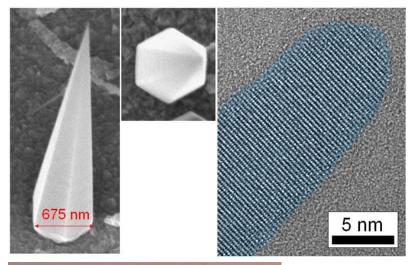
Dartmouth: Polar Environmental Change

George Washington University: Dynamics of Behavioral Shifts in Human Evolution: Brains, Bodies, and Ecology


UCSD: Marine Biodiversity: **Understanding Threats and Providing Solutions**

Theme: Clean Energy and Engineering Processes

 Texas Tech University: Wind Science and Engineering



University of Delaware: Sustainable Energy from Solar Hydrogen

Nanoscale Science in IGERT

- 24 active awards including 4 renewals directly focused on Nanoscale Science
- Nanoscale Science in
 - Biology
 - Devices and machines
 - Electronics
 - Fabrication
 - Laminates
 - Materials; Biomaterials
 - Medical
 - Particles
 - Pharmaceutical
 - Photonics
 - Probes

2010 Portfolio by Theme

	THEMES													
Title	sustain. env. eco	Comp & applied math	human and social	nano	energy	materials	infrastructure	entrep	climate	evo/dev	Imaging	sensing, signal procesing	water	
IGERT: Sustainable Grid Integration of Distributed and Renewable Resources NSF IGERT: Training the Next Generation of Researchers in Cellular & Molecular	х	х			х		X							
Mechanics and Bionanotechnology Integrative Graduate Education and Research Traineeship in Magnetic and				Х		Х								Х
Nanostructured Materials IGERT: Geoinformatics for Environmental and Energy Modeling and Prediction	Х			Х		Х								
(GEEMaP)		х	х				х		х					
IGERT: Complex Scene Perception		х	х											
IGERTInterdisciplinary Evolutionary Primatology: Conservation and Human Evolution join Behavior, Bones and Genes			х							х	х			х
IGERT: Sustaining Ecosystem Services to Support Rapidly Urbanizing Areas	х		х											
IGERT: Distributed Renewable Energy: From Science and Technology to Entrepreneurship and Policy	х			х	х	х								
IGERT: Returning the Radio to Chemistry: Integrating Radiochemistry into a Chemistry Ph.D. Program	х					x					х			
IGERT Linking Individuals, Families and Environments in An Aging Society			х											х
IGERT: Water Across Boundaries - Integration of Science, Engineering, and Diplomacy IGERT: Training, Research and Education in Engineering for Cultural Heritage	х		Х				X						Х	
Diagnostics IGERT: INSPIRE: Information Security and Privacy: An Interdisciplinary, Research and		Х	Х			Х				Х	Х			
Education Program		х	х				х							
IGERT: Stem Cell Blomanufacturing						х		х						Х
IGERT: WATER - Integrated Water Atmosphere and Ecosystem Education and Research	х		х						х				х	
IGERT: Reverse Ecology: Computational Integration of Genomes, Organisms, and Environments	x	х				x								х
IGERT Nanomedicine Science and Technology				х		х		х			x	х		х
IGERT: MultiScale Transport in Environmental and Physiological Systems (MultiSTEPS)		х		x	х	x								х
IGERT: Training Program in Sustainable Energy Recovery from the Earth Educational Innovation at the Intersection of Geosciences and Engineering	х	х	х		х	x								
IGERT: Educating and the Interface: Nanomaterial Environmental Impacts and Policy (EI-NEIP)			x	х		х								х
	9	8	11	6	4	11	4	2	2	2	4	1	2	8
	45%	40%	55%	30%	20%	55%	20%	10%	10%	10%	20%	5%	10%	40%

www.igert.org

You are not logged in | Log In | Contact IGERT

Home >

out IGERT »

T THAT ST HE ST HOST

lithrow -

Events & News

IGERT Conferences:

Groups >

Project Share:

IGERT

Integrative Graduate Education and Research Traineeship

See Highlights from Projects »

About IGERT

IGERT is the National Science Foundation's flagship interdisciplinary training program, educating U.S. Ph.D. scientists and engineers by building on the foundations of their disciplinary knowledge with interdisciplinary training, affore details »

IGERT Resource Center

The IGERT Resource Center provides comprehensive information about IGERT and each of its actively funded projects. The Resource Center provides an e-community for current IGERT students and faculty to share resources, research, presentations, challenges and best practices. More details >>

EWS.

- 3/16/09 IGERT Soft Launch Users
- 1/15/09 INISTA 2009 call for papers
- 2/01/09 S-NET submission deadline
- 2/10/09 ESF and NSF to host summit
- 2/12/09 Emerging Science podoast

2/14/09 Visualization Challenge